Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers.

نویسندگان

  • Sefaattin Tongay
  • Wen Fan
  • Jun Kang
  • Joonsuk Park
  • Unsal Koldemir
  • Joonki Suh
  • Deepa S Narang
  • Kai Liu
  • Jie Ji
  • Jingbo Li
  • Robert Sinclair
  • Junqiao Wu
چکیده

Band offsets between different monolayer transition metal dichalcogenides are expected to efficiently separate charge carriers or rectify charge flow, offering a mechanism for designing atomically thin devices and probing exotic two-dimensional physics. However, developing such large-area heterostructures has been hampered by challenges in synthesis of monolayers and effectively coupling neighboring layers. Here, we demonstrate large-area (>tens of micrometers) heterostructures of CVD-grown WS2 and MoS2 monolayers, where the interlayer interaction is externally tuned from noncoupling to strong coupling. Following this trend, the luminescence spectrum of the heterostructures evolves from an additive line profile where each layer contributes independently to a new profile that is dictated by charge transfer and band normalization between the WS2 and MoS2 layers. These results and findings open up venues to creating new material systems with rich functionalities and novel physical effects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tuning Coupling Behavior of Stacked Heterostructures Based on MoS2, WS2, and WSe2

The interlayer interaction of vertically stacked heterojunctions is very sensitive to the interlayer spacing, which will affect the coupling between the monolayers and allow band structure modulation. Here, with the aid of density functional theory (DFT) calculations, an interesting phenomenon is found that MoS2-WS2, MoS2-WSe2, and WS2-WSe2 heterostructures turn into direct-gap semiconductors f...

متن کامل

Vertical and in-plane heterostructures from WS2/MoS2 monolayers.

Layer-by-layer stacking or lateral interfacing of atomic monolayers has opened up unprecedented opportunities to engineer two-dimensional heteromaterials. Fabrication of such artificial heterostructures with atomically clean and sharp interfaces, however, is challenging. Here, we report a one-step growth strategy for the creation of high-quality vertically stacked as well as in-plane interconne...

متن کامل

Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures.

Elastic properties of materials are an important factor in their integration in applications. Chemical vapor deposited (CVD) monolayer semiconductors are proposed as key components in industrial-scale flexible devices and building blocks of two-dimensional (2D) van der Waals heterostructures. However, their mechanical and elastic properties have not been fully characterized. Here we report high...

متن کامل

Ultrafast charge transfer in atomically thin MoS<sub>2</sub>/WS<sub>2</sub> heterostructures

Van der Waals heterostructures have recently emerged as a new class of materials, where quantum coupling between stacked atomically thin two-dimensional layers, including graphene, hexagonal-boron nitride and transition-metal dichalcogenides (MX2), give rise to fascinating new phenomena1–10. MX2 heterostructures are particularly exciting for novel optoelectronic and photovoltaic applications, b...

متن کامل

Mixed multilayered vertical heterostructures utilizing strained monolayer WS2.

Creating alternating layers of 2D materials forms vertical heterostructures with diverse electronic and opto-electronic properties. Monolayer WS2 grown by chemical vapour deposition can have inherent strain due to interactions with the substrate. The strain modifies the band structure and properties of monolayer WS2 and can be exploited in a wide range of applications. We demonstrate a non-aque...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nano letters

دوره 14 6  شماره 

صفحات  -

تاریخ انتشار 2014